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Abstract. Genetic Programming uses trees to represent chromosomes.
The user defines the representation space by defining the set of functions
and terminals to label the nodes in the trees. The sufficiency principle
requires that the set be sufficient to label the desired solution trees. To
satisfy this principle, the user is often forced to provide a large set, which
unfortunately also enlarges the representation space and thus, the search
space. Structure-preserving crossover, STGP, CGP, and CFG-based GP,
give the user the power to reduce the space by specifying rules for valid
tree construction. However, often the user may not be aware of the best
representation space, including heuristics, to solve a particular problem.
In this paper, we present a methodology, which extracts and utilizes lo-
cal heuristics aiming to improve search efficiency. The methodology uses
a specific technique for extracting the heuristics, based on tracing fisrt
order (parent-child) distributions of functions and terminals. We illus-
trate those distributions, and then we present a number of experimental
results. ...

1 Introduction

Genetic programming (GP), proposed by Koza [2], is an evolutionary algorithm,
and thus it solves a problem by utilizing a population of solutions evolving
under limited resources. The solutions, called chromosomes, are evaluated by
a problem-specific user-defined evaluation method. They compete for survival
based on this evaluation, and they undergo simulated evolution by means of
simulated crossover and mutation operators.

GP differs from other evolutionary methods by using trees to represent po-
tential problem solutions. Trees provide a rich representation that is sufficient
to represent computer programs, analytical functions, and variable length struc-
tures, even computer hardware [2]. The user defines the representation space
by defining the set of functions and terminals labelling the nodes of the trees.
One of the foremost principles is that of sufficiency [1][2], which states that the
function and terminal sets must be sufficient to solve the problem. The reason-
ing is obvious: every solution will be in the form of a tree, labelled only with
the user-defined elements. Sufficiency will usually force the user to artificially
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enlarge the sets to avoid missing some important elements. This unfortunately
dramatically increases the search space. Even if the user is aware of the functions
and terminals needed in a solution, he/she may not be aware of the best sub-
set to solve a particular problem. Moreover, even if such a sub-set is identified,
questions about the specific distribution of the elements of the subset may arise.
One question is whether all functions and terminals should be equally available
or if there should be some heuristic distribution. For example, a terminal t may
be required but never as an argument to function f1, and maybe just rarely as
an argument to f2. All of the above are obvious reasons for designing:

— methodologies for processing such heuristics,
— methodologies for automatically extracting those heuristics.

Methodologies for processing user heuristics have been proposed over the last
few years: structure-preserving crossover [2], STGP [6], CGP [3], and CFG-based
GP [8].

This paper presents a methodology for extracting such heuristics, called
Adapt-able Constrained GP (ACGP). It is based on CGP, which allows for
processing syntax, semantics, and heuristic constraints in GP [3]. In Section 2,
we briefly describe CGP, paying special attention to its role in GP problem solv-
ing as a methodology for processing constraints and heuristics. In Section 3, we
introduce the ACGP method-ology for extracting heuristics, and then present
the specific technique that was implemented for the methodology. In Section 4,
we define the problem we will use to illustrate the technique, illustrate the dis-
tribution of functions/terminals during evolution, and present some interesting
results. Finally, in concluding Section 5, we elaborate on future work needed to
extend the technique and the methodology.

2 Constraining GP Trees with CGP

Even in early GP applications, it became apparent that functions and terminals
should not be allowed to mix in an arbitrary way. For example, a 3-argument
if function should use, on its condition argument, a subtree that computes a
Boolean and not temperature or angle. Because of the difficulties in enforcing
these constraints, Koza has proposed the principle of closure [2], which requires
very elaborate semantic interpretations to ensure the validity of any subtree in
any context. Structure-preserving crossover was introduced as the first attempt
to handle such constraints [2] (the primary initial intention was to preserve
structural constraints imposed by automatic modules ADFs).
Structure-preserving crossover wasn’t a generic method. In the nineties, three
in-dependent generic methodologies were developed to allow problem-independent
constraints on the tree construction. Montana proposed STGP [6], which used
types to control the way functions and terminals can label local tree struc-
tures. For exam-ple, if the function if requires Boolean as its first argument,
only Boolean-producing functions and terminals would be allowed to label the
root of that subtree. Janikow proposed CGP, which originally required the user
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to explicitly specify allowed and/or disallowed local tree structures [3]. These
local constraints could be based on types, but also on some problem specific
heuristics. In v2.1, CGP also added type-processing capabilities, with function
overloading mechanisms [4]. For example, if a subtree needs to produce an inte-
ger, and we have the function + (add) overloaded so that it produces integers
only if both arguments are integers, then only this specific instance of add would
be allowed to label the root of that subtree. Finally, those interested more di-
rectly in program induction following specific syntax structure have used similar
ideas to propose CFG-based GP [8].

CGP relies on closing the search space to the subspace satisfying the desired
constraints. The constraints are local distribution constraints on labelling the
tree - only parent-child relationships can be efficiently processed [3] (the pro-
cessing was shown to impose only constant overhead for mutation and one more
tree traversal for cross-over).

CGP vl allows processing only parent-one-child contexts. This context con-
straint is independent of the position of the subtree in the tree, and of the other
labels beyond this context.

Types and function overloading in v2 allows this context to be extended to
the other siblings. For example, v2 allows to require that whenever a node is
labelled with if, its leftmost child can only be labelled with Boolean terminals
(and possibly not all Boolean terminals if there exist some heuristics), or with
functions which can be instantiated to produce Boolean (these possible labelling
elements form so called mutation sets in CGP). As mentioned in the conclusions,
the parent-child context can be further extended in the future.

CGP has one additional unique feature. It allows a particular local context
to be weighted, to reflect some detailed heuristics. For example, it allows the
user to de-clare that the function if, even though it can use either f1 or {2 for its
condition child, it should use fl more likely. This feature is utilized in ACGP to
express and process the heuristics.

Previous experiments with CGP have demonstrated that proper constraints
can indeed greatly enhance the evolution, and thus improve problem-solving ca-
pabilities. However, in many applications, the user may not be aware of those
proper constraints. For example, as illustrated with the 11-multiplexer problem,
improper constraints can actually reduce GP’s search capabilities while proper
constraints can greatly speed up evolution [3]. This paper presents a new method-
ology, which automatically updates the constraints, or heuristics, to enhance the
search characteristics with respect to some user-defined objectives (tree quality
and size at present). In what follows, we describe the methodology and a specific
technique implementing it, and then present some experimental results.

3 ACGP and the Local Distribution Technique

ACGP is a methodology to automatically modify the heuristic weights on typed
mutation sets in CGP. The basic idea is that there are some heuristics on the
distribution of labels in the chromosomes both at the local level (parent-child)
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and at a more global level. These ideas are somehow similar to those applied
in Bayesian Optimization Network [7], but used in the context of GP and func-
tions/terminals and not binary alleles.

We have already investigated two ACGP techniques that allow such modifica-
tions. One technique observes the utility of specific local contexts when applied
in mutation and crossover, and based on the utility (parent-offspring fitness
relation-ship) it increases or decreases the weights for the used constraints. A
very simple implementation of this technique was shown to increase GP problem
solving capabilities (mutation was more problematic due to its bucket-brigade
problem) [5].

In here, we investigate a similarly simple technique. It observes the distribu-
tion of functions and terminals in all/best trees (and thus the surviving distri-
bution of all/best parent-child contexts). Note that we are using distribution to
refer to the local context. Examples of such distributions are presented in Sec-
tion 4. This idea is somehow similar to that used for CFG-based GP as recently
reported in [8].

ACGP basic flowchart is illustrated in Fig. 1. ACGP works in iterations - it-
eration is a number of generations ending with extracting the distribution. The
distribution information is collected and used to modify the actual mutation set
weights (the heuristics). The modification can be gradual (slope on) or complete
replacement (slope off). Then, the run continues, with the same population or
with a randomly regrown (regrow on) population. The regrowing option seems
beneficial with longer iterations, where likely some material gets lost before being
accounted for in the distributions, and thus needs to be reintroduced by regrow-
ing the population (as will be shown in Section 4). Note that the newly regrown
population is generated based on new (updated) heuristics and thus may be
vastly different from the first initial population - see Section 4 for illustrations.

ACGP can also work with simultaneous independent multiple populations
(pop), to improve its distribution statistics - see Figure 1.4. ACGP can in fact
correlate the populations by exchanging selected chromosomes - however, we
have not tested such settings yet.Moreover, at present all independent popu-
lations contribute to and use the same single set of heuristics -we have not
experimented with maintaining separate heuristics, which likely would result in
solving the problem in different subspaces by different populations.

Each population is ordered based on a 2-key sorting, which compares sizes
(ascending) if two fitness values are relatively similar, and otherwise compares
fitness (descending). The more relaxed the definition of relative similarity, the
more importance is placed on sizes.

Subsequently, the best use percent of the ordered chromosomes are selected
into a common pool (from all populations). This pool of chromosomes is used to
compute distribution statistics (or only use percent of the pool if all=0). The dis-
tribution is a 2-dim matrix counting the frequency of parent-child appearances.
Table 1 illustrates some extracted context distribution. Assume the function f1
has 2 arguments (as shown), and there are 2 functions and two terminals in the
user set (fl, £2, t1, t2). This function (f1) appears 100 times in the selected set
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of trees (total for each row is 100). The cell f1(argl)[f1] = 20 says that in 20 of
the 100 cases the first argument subtree is labelled with f1. The 0 entry in the
last cell indicates that the terminal t2 never labels the second subtree of f1 in
the selected set.

Initialize P

Extract
distribution|
Update
heuristics

Fig. 1. The flowchart for the ACGP algorithm

selection
'— mutation j&————N
crossover

[

Table 1 illustrates some extracted context distribution. Assume the function
f1 has 2 arguments (as shown), and there are 2 functions and two terminals in
the user set (fl, £2, t1, t2). This function (f1) appears 100 times in the selected
set of trees (total for each row is 100). The cell f1(argl)[fl] = 20 says that in 20
of the 100 cases the first argument subtree is labelled with f1. The 0 entry in
the last cell indicates that the terminal t2 never labels the second subtree of f1
in the selected set.

Table 1. Examples of extracted distributions (partial matrix)

f1 2 t1 t2
Function f1 argl 20 40 10 30
Function f1 arg2 10 10 80 O

4 Illustrative Experimental Results

To illustrate the concepts, we traced the local distributions in the population,
measured fitness gains in subsequent iterations, and also attempted to visualize
the extracted heuristics both in terms of their specific values and in terms of
dynamic changes in subsequent iterations.
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All reported experiments used 1000 trees per population, the standard mu-
tation, crossover, and reproduction operators at the rate of 0.05, 0.85, and 0.1,
and for the sake of sorting, trees with fitness values differing by no more than
2% of the fitness range values in the population were considered the same on
fitness (and thus ordered ascending by size).

4.1 TIllustrative Problem: 11-multiplexer

To illustrate the behavior of ACGP, we selected the well-known 11-multiplexer
problem [2]. This problem is not only well known and studied, but we also know
from [3] which specific constraints improve the search efficiency. Our objective
was to attempt to discover some of the same constraints automatically, and to
observe how they change the search properties over multiple ACGP iterations.
The 11-multiplexer problem is to discover the Boolean function that passes
the correct data bit (out of eight d0d7) when fed 3 addresses (a0. . . a2). There are
2048 possible combinations. Koza [2] has proposed a set of 4 atomic functions to
solve the problem: 3-argument if/else, 2-argument and, or, and 1-argument not,
in addition to the data and address bits. This set is not only sufficient but is also
redundant. In [3] it was shown that operating under a sufficient set such as not
with and degrades the performance, while operating with only if (sufficient by
itself) and possibly not improves the performance. Moreover, it was shown that
the performance is further enhanced when we restrict the if’s condition argument
to choose only addresses, straight or negated, while restricting the two action
arguments to select only data or recursive if [3]. This information is beneficial
as we can compare ACGP-discovered heuristics with these previously identified
and tested — as we will see, ACGP discovers virtually the same heuristics.

4.2 Change in Distribution of Local Heuristics

Here we traced the change in distribution of functions and terminals in the pop-
ulations without utilizing ACGP, just to visualize specific characteristics and
behavior of the distribution. In the future, we plan to use this information for
further automation of ACGP. The distribution change is measured in terms of
the local contexts, as explained in the previous section, and with respect to a
reference distribution (either the distribution in the initial or in the previous
generation). The distribution change is defined as the sum of squared differ-
ences between the two populations on individual frequencies (normalized cells
in Table 1). This change can be measured for individual functions, function-
arguments, and even function-argument-values. How-ever, unless indicated oth-
erwise, the illustrations presented in the paper use all functions/terminals for
the change measure. This subsection shows averages of five independent single-
population runs.

Fig. 2a illustrates the change in the distribution of the local heuristics in the
whole population, and also in just the best 20% of the population, with a) the
initial random population as the reference. As seen, during the initial generations
there is a rapid change in the distribution, as tress with ”"bad” contexts become
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Fig. 2. Function/terminal distribution in the whole population and the best 20%

extinct. Two observations are crucial to ACGP and its future extensions. First,
the change saturates, which will become important if ACGP were to automat-
ically trace the change to decide when to modify its heuristics (at present, the
user decides that). Second, the best trees have distributions very similar to those
in the best population.

One may suggest that even though the changes saturate, it doesn’t mean that
the actual changes from generation to generation subside. Fig. 2b) illustrates that
in fact population-to-population changes diminish to result in the saturation see
in Fig. 2a.

4.3 Change in the Speed of Evolution

The first obvious question regarding ACGP’s performance is what good it does.
In this section, we answer the question in terms of average fitness growth and
the number of generations needed to find a solution, while in the next section
we look at the extracted quantitative and qualitative heuristics.
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Fig. 3. Average fitness across five populations in selected iterations (with regrow)
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We have conducted two experiments while running five independent CGP
populations. In both experiments, we have adjusted the heuristic weights every
25 generations (one iteration), with the parameter regrow set on, for a total
of 10 iterations. The first experiment used incremental weight changes (slope
on), while the other immediately replaced the weights with the actual extracted
distributions, and used the all option (used the distribution from all the extracted
trees). Fig. 3 presents the results, shown separately for each of the 10 iterations.
As seen, the average fitness grows much faster in subsequent iterations, indicating
that ACGP did indeed extract helpful heuristics. Moreover, the initial fitness in
the initial random population of each iteration (regrow causes each new iteration
to start with a new random population) also increases. As illustrated later in
Fig. 4, some populations could eventually solve the problem in the generation in
subsequent iterations. Between the two, we can see that the second run (slope
off) causes much faster learning but it is too greedy and indeed fails to solve
the problem consistently (average saturation below 1.00 fitness). Inspection of
the evolved heuristics revealed that some terminals in the evolved representation
had very low weights, making it harder to consistently solve the problem in all
populations even though it made it easier to "almost” solve the problem (in
fact, the same experiment with all off completely dropped one terminal off the
representation, making it impossible to solve the problem).

Fig. 4a illustrates the same results differently. It plots the number of genera-
tions needed to solve the problem in subsequent iterations by the best individuals
in the population (not average). Here we can also see that the greedy slope-off
case indeed reduces the number of required generations much faster and after
the third iteration it always solves the problem on the first generation! However,
as seen in Fig. 3b, not all populations were able to do so, and thus this approach
was too greedy.
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Fig. 4. Distribution changes in the whole population vs. the initial population, for each
iteration separately

Finally, we also traced the same distribution change as in the previous sec-
tion, for different iterations. The results are presented in Fig. 4b, which shows
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distribution changes in the whole population, with the initial population of the
given iteration as the reference. As seen, not all iterations contributed the same
to the extracted heuristics. The first generation in fact didn’t do as well as iter-
ations 2 and 3. One may speculate that the initial iteration without any input
heuristics found it too difficult to decide on the direction of change.

4.4 The Evolved Heuristics
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Fig. 5. Evolved heuristics for if, the condition argument (direct and indirect through

not

In this section we look at the evolved heuristics, attempting to understand

them and compare against those previously identified and tested for this problem.
Recall that the best results were obtained with only the if function, the three
addresses and not function in the condition subtree of if, and then recursive if
and the data bits in the two action subtrees [3].
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——do di 05 —do dt
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Iteration Iteration

(a) Heuristics on function if first action (b) Heuristics on function 7 f second action

Fig. 6. Evolved heuristics for if, action arguments
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Fig. 5 illustrates the evolution of the heuristics on the condition part of if. All
functions and terminals start equally (no prior heuristics on the first iteration).
In the course of the 10 iterations, we can observe that and, or, and the data
bits are indeed dropped off. We can also see a random shift, in iteration &,
between a0 and a2 (notice the corresponding increase in the required generations
at this iteration in Fig. 4 left, meaning this was an accident and some work
was needed to recomputed the heuristics). In fact, after generation 150, the
heuristics seem more natural than at the end - one of the subsequent research
topics will be to decide when to stop, based on the observed distributions. One
notable observation in Fig. 5 left is that a0 is sufficiently represented, a2 is under-
represented, and al is disallowed! Now, if this were the end of the story, we should
not be finding perfect solutions so quickly using this evolved representation. Fig.
5 right reveals the answer to this puzzle. According to Fig. 5a, , not is also
highly allowed in the if’s condition part. According to Fig. 5b, not supports the
under-represented a2, and then strongly supports the missing al.

Fig. 6 illustrates the total heuristics on the action parts of if. Recall that the
action part in the best scenario should allow only data bits, and then recursive
if. Moreover, if should have higher probability to allow deeper trees. We can see
that this is indeed what has evolved. The function if spikes, and the data bits
remain relatively stable - however because the remaining functions/terminals
drop off, in fact the data bits are extracted. In the future, we plan to extend the
heuristics not only to types but also to different levels - in this case we would
observe that the if weight diminishes with node depth.
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Fig. 7. Standard deviation on the function/terminal heuristics for function if test
argument

Finally, we observe the changes in the heuristics of the if’s condition ar-
gument by tracing the standard deviation in its distribution of functions and
terminals, separately for both. The results are illustrated in Fig. 7. Of course
the deviations start very low on the first generation of the first iteration (driven
by the initially equal heuristics) - note the log scale. At subsequent iterations,
the weights become more diverge as the heuristics are learned, and they also
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change less (relative to the iteration), indicating again that heuristics extraction
has saturated.

4.5 Influence of Population Size, Sampling Rate, and Iteration
Length

Average number of generations needed to solve 80% of fitness
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Fig. 8. The number of generations needed to solve for 80% — sampling rate for distri-
butions is the effective rate.

We have only reported here experiments for Iteration=25, population=1000,
and sampling of 4% (20% of 5 populations, then 20% of that set). Fig. 8 presents
a cummulative result for iteration=1, various population sizes, and various effec-
tive sampling rates. As seen, ACGP works quite well with short iterations, and
in fact beats GP especially for smaller populations and smaller sampling rates.
It seems that ACGP allows smaller populations to solve the same problem. For
more of such experiments, refer to [5].

5 Conclusions

This paper presents the ACGP methodology for automatic extraction of heuris-
tic constraints in genetic programming. It is based on the CGP methodology,
which allows processing such constraints and heuristics. The ACGP algorithm
here implements a technique based on distribution of local first-order (parent-
child) contexts in the population. As illustrated, ACGP is able to extract such
heuristics, which not only improve search capabilities but also have meaning-
ful interpretation as com-pared to previously determined best heuristics for the
11-multiplexer problem.

The paper also illustrates the changes in the distributions in the popula-
tion, and identifies specific characteristics that can be used to further automate
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ACGP. This is what we plan to investigate in the future, along with other tech-
niques for extracting the heuristics, such as co-evolution of heuristics and solu-
tions. We also plan to extend the technique to types and overloaded functions
as available in CGP v2.1. This will allow processing a child with its parent in
the context of its sibling.

Other questions to be explored include:

— Extending the technique to the CGP v2 technology, which allows overloaded
functions, and this extending the heuristics to the context of siblings.

— Linking population size with ACGP performance and problem complexity.

— Scalability of ACGP.

— Varying the effect of distribution and the heuristics at deeper tree levels.

— Exchanging chromosomes or separating heuristics between populations.

— Clustering techniques to explore useful high-order heuristics (more levels
deep). This is similar to ADFs, except that ACGP would learn clusters of
deep heuristics rather than abstract functions.

— The resulting trade-off between added capabilities and additional complexity
when using deeper heuristics (CGP guarantees its low overhead only for first-
order constraints/heuristics).

— Other techniques for the heuristics, such as co-evolution between the heuris-
tics and the solutions.
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